Long Out-time, Out-of-Autoclave Cure Composites, Phase I

Completed Technology Project (2010 - 2010)

Project Introduction

As the size of composite parts exceed that of even the largest autoclaves, new out-of-autoclave processes and materials are necessary to achieve the same level of performance as autoclave cured composites. Unfortunately, the quality of composites manufactured with current out-of-autoclave prepreg systems is limited by their short shelf-life at ambient conditions. The resin advancement, due to long lay-up times, commonly causes variations in fiber volume and higher void content in the cured structures. Also, current out-of-autoclave prepreg systems do not provide the same level of performance, especially damage tolerance, as many current autoclave cured prepreg systems. It is the objective of this work to develop a matrix and prepreg system for out-ofautoclave processing that has a year out-time at ambient conditions while also providing an excellent balance of mechanical properties and damage tolerance. As an additional functionality, the out-of-autoclave prepreg system will be developed to have inherent skin-core self-adhesive properties so that film adhesives are not required for designs with honeycomb cores. It is expected that the TRL will be 4 at the end of this Phase I program.

Primary U.S. Work Locations and Key Partners

Long Out-time, Out-of-Autoclave Cure Composites, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Long Out-time, Out-of-Autoclave Cure Composites, Phase I

Completed Technology Project (2010 - 2010)

Organizations Performing Work	Role	Туре	Location
Applied Poleramic,	Lead	Industry	Benicia,
Inc.	Organization		California
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
California	Ohio

Project Transitions

0

January 2010: Project Start

July 2010: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140103)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Applied Poleramic, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Brian S Hayes

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Long Out-time, Out-of-Autoclave Cure Composites, Phase I

Completed Technology Project (2010 - 2010)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - ─ TX12.4 Manufacturing
 - └─ TX12.4.1 Manufacturing Processes

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

